Conseils utiles

Comment calculer le diamètre d'un cercle: formule et explication

Pin
Send
Share
Send
Send


Pour commencer, comprenons ce qu'est un cercle et quelle est sa différence par rapport à un cercle. Prenez un stylo ou un crayon rouge et tracez un cercle régulier sur un morceau de papier. Remplissez tout le milieu de la forme obtenue avec un crayon bleu. Le contour rouge indiquant les limites de la figure est un cercle. Mais le contenu bleu à l'intérieur est le cercle.

Les dimensions d'un cercle et d'un cercle sont déterminées par le diamètre. Sur la ligne rouge indiquant le cercle, marquez les deux points de manière à ce qu'ils se reflètent l'un en l'autre. Connectez-les avec une ligne. Un segment passera nécessairement par un point situé au centre du cercle. Ce segment reliant les parties opposées du cercle s'appelle le diamètre en géométrie.

Un segment qui ne s'étend pas au centre du cercle, mais qui se confond avec les extrémités opposées, est appelé un accord. Par conséquent, la corde qui traverse la pointe du centre du cercle est son diamètre.

La distance entre le point central et le point situé sur le cercle s'appelle le rayon. Elle est indiquée par la lettre R. Connaître la valeur du rayon permet de calculer le diamètre du cercle en une étape simple:

Par exemple, le rayon est de 7 cm. Nous multiplions 7 cm par 2 et obtenons une valeur égale à 14 cm. Réponse: D de la figure donnée est de 14 cm.

Parfois, il est nécessaire de déterminer le diamètre d'un cercle uniquement par sa longueur. Ici, il est nécessaire d'appliquer une formule spéciale qui aide à déterminer la circonférence. La formule L = 2 Pi * R, où 2 est une valeur constante (constante) et Pi = 3,14. Et comme on sait que R = D * 2, la formule peut être représentée autrement

Cette expression est également applicable comme formule du diamètre d’un cercle. En substituant les quantités connues dans le problème, nous résolvons l'équation avec une inconnue. Disons que la longueur est de 7 m.

Réponse: le diamètre est de 21,98 mètres.

Si la valeur de la surface est connue, alors le diamètre du cercle peut également être déterminé. La formule utilisée dans ce cas ressemble à ceci:

D = 2 * (S / Pi) * (1/2)

S - dans ce cas, la surface de la figure. Supposons que dans le problème, il est égal à 30 mètres carrés. Nous obtenons:

D = 2 * (30/3, 14) * (1/2) D = 9, 55414

Lorsque la valeur indiquée dans le problème est égale au volume (V) de la balle, la formule suivante pour trouver le diamètre est utilisée: D = (6 V / Pi) * 1/3.

Parfois, il faut trouver le diamètre d’un cercle inscrit dans un triangle. Pour ce faire, selon la formule, on trouve le rayon du cercle présenté:

R = S / p (S est l'aire du triangle donné et p est le périmètre divisé par 2).

Le résultat obtenu est doublé, étant donné que D = 2 * R.

Il faut souvent trouver le diamètre du cercle dans la vie quotidienne. Par exemple, lors de la détermination de la taille d'un anneau, ce qui équivaut à son diamètre. Pour ce faire, enveloppez le doigt du propriétaire potentiel de la bague avec du fil. Marquez les points de contact entre les deux extrémités. Mesurer la longueur d'un point à l'aide d'une règle. Nous multiplions la valeur obtenue par 3,14 en suivant la formule permettant de déterminer le diamètre à une longueur connue. Ainsi, l'affirmation selon laquelle les connaissances en géométrie et en algèbre ne sont pas utiles dans la vie ne correspond pas toujours à la réalité. Et c’est une raison sérieuse d’être plus responsable vis-à-vis des matières scolaires.

Cercle et cercle

Un cercle est un ensemble de points placés à égale distance du point principal - le centre. Cette distance s'appelle le rayon.

La distance entre deux points d'une même ligne s'appelle un accord. De plus, si l’accord passe par le point principal (centre), on l’appelle le diamètre.

Maintenant, considérons ce qu'est un cercle. L'ensemble de tous les points qui se trouvent à l'intérieur du contour s'appelle un cercle.

Quelle est la circonférence?

Après avoir examiné toutes les définitions, nous pouvons calculer le diamètre du cercle. La formule sera considérée un peu plus tard.

Pour commencer, nous allons essayer de mesurer la longueur du contour du verre. Pour ce faire, nous l'enveloppons d'un fil, puis nous le mesurons avec une règle et nous cherchons la longueur approximative d'une ligne imaginaire autour du verre. Parce que la taille dépend de la mesure correcte du sujet, et que cette méthode n’est pas fiable. Néanmoins, des mesures précises sont tout à fait possibles.

Pour ce faire, rappelez-vous encore la roue. Nous avons vu à plusieurs reprises que si vous augmentez le rayon de la roue (rayon), la longueur de la jante (circonférence) augmentera également. Et tout comme le rayon du cercle diminue, la longueur de la jante diminue également.

Si nous suivons attentivement ces modifications, nous verrons que la longueur d’une ligne arrondie imaginaire est proportionnelle à son rayon. Et ce nombre est constant. Ensuite, réfléchissez à la manière dont le diamètre du cercle est déterminé: la formule correspondante sera appliquée dans l'exemple ci-dessous. Et réfléchissez-y pas à pas.

Formule du cercle à travers le diamètre

La longueur du contour étant proportionnelle au rayon, elle est donc proportionnelle au diamètre. Par conséquent, nous désignons arbitrairement sa longueur par la lettre C et son diamètre par d. Le rapport longueur / diamètre du contour étant un nombre constant, il peut être déterminé.

Après avoir effectué tous les calculs, nous déterminerons un nombre d'environ 3,1415 ... Pour la raison pour laquelle un nombre spécifique n'a pas fonctionné dans les calculs, nous le désignerons par la lettre π. Cette icône nous est utile pour obtenir la formule de la circonférence d’un cercle à travers le diamètre.

Tracez une ligne imaginaire à travers le point central et mesurez la distance entre les deux extrêmes. Ce sera le diamètre. Si nous connaissons le diamètre du cercle, la formule permettant de déterminer sa longueur ressemblera à ceci: C = d * π.

Si nous déterminons la longueur de différentes formes, si leur diamètre est connu, la formule sera appliquée de la même manière. Depuis le signe π - ceci est un calcul approximatif, il a été décidé de multiplier le diamètre par 3,14 (un nombre arrondi au centième).

Comment calculer le diamètre: formule

Cette fois, essayez d’utiliser cette formule pour calculer d’autres quantités, en plus de la longueur du contour. Pour calculer le diamètre le long de la circonférence, la même formule est utilisée. Seulement pour cela nous divisons sa longueur par π. Ça va ressembler à ça d = C / π.

Considérez comment cette formule fonctionne dans la pratique. Par exemple, nous connaissons la longueur du contour du puits, nous devons calculer son diamètre. Il est impossible de le mesurer car, en raison des conditions météorologiques, il n’est pas accessible. Et notre tâche est de faire une couverture. Que ferons-nous dans ce cas?

Vous devez utiliser la formule. Prenez la longueur du contour du puits - par exemple, 600 cm. Nous inscrivons dans la formule un nombre spécifique, à savoir C = 600 / 3,14. En conséquence, nous obtenons environ 191 cm, arrondissez le résultat à 200 cm, puis tracez un trait arrondi avec un compas au rayon de 100 cm.

Comme la forme avec un grand diamètre doit être dessinée avec le compas approprié, un tel outil peut être fabriqué par vous-même. Pour ce faire, prenez le rail de la longueur souhaitée et enfoncez un clou à chaque extrémité. Nous installons un clou dans la pièce et l'enfonçons légèrement pour qu'il ne bouge pas de l'endroit prévu. Et avec l'aide de la seconde nous tirons une ligne. L'appareil est très simple et pratique.

La technologie moderne vous permet d’utiliser la calculatrice en ligne pour calculer la longueur du contour. Pour ce faire, entrez simplement le diamètre du cercle. La formule sera appliquée automatiquement. Vous pouvez également calculer la circonférence à l'aide du rayon. De plus, si vous connaissez la circonférence, la calculatrice en ligne calcule le rayon et le diamètre à l'aide de cette formule.

Pin
Send
Share
Send
Send